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Abstract 
The objective of this paper was to identify a time series model representative of the number of 

weekly Citi Bike rides in New York City – and then using such model to produce forecasts. 

The data analyzed had weekly frequency, and it spanned from the beginning of September 2013 
to the end of October 2018 (n = 277 weeks). The analysis lead to six potential Multiplicative 

Seasonal ARIMA Models that could be used for the stated objective. The six models’ 

diagnostics were evaluated; as a result of the evaluation, out of the six, an 

ARIMA(1,1,1)×(0,1,1)51 model and an ARIMA(0,1,1)×(1,1,1)51 model were selected. These 

two models were then compared using forecast cross validation testing.  At the end, taking into 

consideration both the diagnostics and the sum of square errors obtained from the cross 

validation tests, the chosen model to represent the weekly Citi Bike rides was the 

ARIMA(0,1,1) × (1,1,1)51. The project concludes by using the latter model to forecast the next 

26 weeks of Citi Bike rides. 

 

1. Introduction 
 
1.1.  Motivation in the Selection of the Data 
 

The selection of the Citi Bike rides data was motivated by the interesting challenges that utilizing this 
data entailed – starting with the challenges involved in the acquisition and preparation of the data, and 
continued in the analysis of the time series with the presence of seasonality. 

The data was first considered for the subject of this project out of the curiosity of finding out what the 
series itself would look like, for it wasn’t aggregately readily available. Furthermore, there was also 
curiosity as to whether this data could serve as part of a bigger research project; one in which this data 
could be used as a sort of proxy (a limited proxy) for the trends in the overall bicycle usage in the city of 
New York; something which would be interesting to compare with the government’s spending on bicycle 

infrastructure throughout the city (if this data is also available). 
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Figure 2.1. Values of the Weekly Citi Bike rides (September 2013 – October 2018, n = 277 weeks) 
 

1.2. Data Sourcing, Scrapping, and Preparation 
1.2.1. Raw Data 

The data was obtained directly from the Citi Bike NYC website. The original data was in the form of 
csv files, with one file for each month since September 2013. Each file contained a row for each 
individual ride, and had been corrected to not include rides that were under 60 seconds.  

 
1.2.2. Processing of the Data 

Among all the rides, only those with durations greater than 90 seconds were kept. After this filtering, 
the remaining rides where grouped by day – and for each day it’s respective number of rides was 
obtained. Finally, the data was aggregated by week; for this, every seven days, was considered a week, 
and in order to get only whole weeks, the first two days of the time series were eliminated. (Python 
Pandas was used for the processing) 

 

1.2.3. Issues in the data 
The following days were missing from the data: 

1/23/16 1/24/16 1/25/16 1/26/16 

2/9/17 3/14/17 3/15/17 3/16/17 
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Figure 2.2. ACF and PACF of the Citi Bike series 

2. Exploratory Analysis 
2.1.1. Data Visualization and Preparation Requirements 

We begin our time series analysis by plotting the data as show in Figure 2.1. From this plot we note a 

few things of interest:  

i. The pattern is representative of seasonal data, which suggest we will have to use a Multiplicative 
Seasonal ARIMA Model. 

ii. The data has a trend, which is indicative of nonstationary behavior. 
iii. The variance does not appear to be constant, suggesting that it must be transformed. 

Further evidence for point i and ii is obtained by graphing the ACF and PACF shown in Figure 2.2.  

To advance the analysis, the issue of variance needed to be addressed first; for it the Box-Cox 
procedure was used. For the Box-Cox lambda we obtained a value of 0.4869, which indicates a square 
root transformation of the data. After the transformation we found that the behavior of the variance along 
the time series was more constant. Having fixed the issue of non-constant variance, to address the 
nonstationary behavior of the series, the first difference was taken. 

The ACF and PACF of the transformed-differenced data are shown in Figure 2.3. From these 
graphs, the seasonality is made clear by the peaks at lags 51 and 102 (Although in a yearly data set we 
would usually expect the lag to be at 52 weeks, in this case 51 weeks appears to be more fitting, 
something that might be due to the missing days mentioned in section 1.2.3). This seasonality further 
suggests we take a seasonal difference with s equaling 51. 
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Figure 2.3. ACF and PACF of the square rooted and differenced Citi Bike series, (1 − B)sqrt(𝑥,) 

To recap this final step can be represented by the following equation: 

∇./∇sqrt(𝑥,) = (1 − B./)(1 − B)sqrt(𝑥,)                                                     (1) 

Where sqrt(𝑥,)  is the transformed Citi Bike Weekly rides.                                                    

2.1.2. Analysis of ACF and PACF, and Selection of Candidate Models 
By analyzing the ACF and PACF shown in Figure 2.4 – which were calculated by using the data 

with the transformation depicted by equation (1) – we can get an idea of what models might be good 

candidates for representing the original data.   

To select the potential candidates, we first focus on the behavior of the ACF and PACF at the 

seasonal lags 51, 102, 153, 204, 255. From this we see that it appears that either: 

i. Both the ACF and the PACF tail off: Candidate model = SARMA(1,1) * 
ii. ACF cuts off at seasonal lag 1 (lag 51) and PACF tails off: Candidate model = SMA(1) 
iii. ACF tails off and PACF cuts off at seasonal lag 1: Candidate model = SAR(1) 

*(with p = 1 because one seasonal spike in PACF and q = 1 because 1 spike in ACF)  

Having selected these, we turn our attention to the within seasonalities sections of the ACF and 
PACF. From this we see that it appears that either: 

a. Both the ACF and the PACF tail off: Candidate model = ARMA(1,1) 
b. ACF cuts off at lag 1 and PACF tails off: Candidate model = MA(1) 
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Figure 2.4. ACF and PACF of the square rooted and differenced Citi Bike series, (1 − B./)(1 − B)sqrt(𝑥,) 
 
The six resulting full candidates are: 
(a) x (i)   =  ARIMA(1,1,1) x (1,1,1) 51 
(a) x (ii)  =  ARIMA(1,1,1) x (0,1,1) 51 
(a) x (iii) =  ARIMA(1,1,1) x (1,1,0) 51 
(b) x (i)   =  ARIMA(0,1,1) x (1,1,1) 51 
(b) x (ii)  =  ARIMA(0,1,1) x (0,1,1) 51 

(b) x (iii) =  ARIMA(0,1,1) x (1,1,0) 51 
 

2.1.3. Diagnostics and Evaluation of Candidate Models 
The diagnostics were analyzed for all the candidate models, and among them the three best were 

selected.  The AIC, BIC and AICc for these three models are shown in the following table: 

Model AIC BIC AICc 
ARIMA(1,1,1) x (0,1,1) s=51 8.420327 7.459576 8.428078 
ARIMA(0,1,1) x (1,1,0) s=51 8.505964 7.53213 8.513502 
ARIMA(0,1,1) x (1,1,1) s=51 8.261425 7.300675 8.269176 

 
From the table we can see that the model ARIMA(0,1,1) x (1,1,1)51 looks like the most promising 

one, for it has the lowest values across all the information criteria. However, on the graphs of the 

diagnostics of fit the model ARIMA(1,1,1) x (0,1,1)51 shows better results. The diagnostics of fit for both 
models can be seen on Figure 2.5 and  Figure 2.6.  
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Figure 2.5. Diagnostics for model ARIMA(0,1,1) x (1,1,1)51 

 
Figure 2.6. Diagnostics for model ARIMA(1,1,1) x (0,1,1)5 

 
Aside from the comparative performance, there are some concerns that show up for both models 

that are important to note. From the plots of the standardized residuals we can see that there are a few 
outliers in the series. From their normal Q-Q plot we can see they have heavy tails, slightly more so on 

the left side.  And from the ACF of the residuals we can see that a small amount of autocorrelation still 
remains (as seen from some spikes that barely grace or surpass the limits). Aside from these concerns the 
models fit well, and given their relatively similar performance – in the following section we will use cross 
validation to evaluate them, and select the one that shows better results for the final forecasting. 
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Figure 2.7. Forecasting for January 2018 to October 2018, Top ARIMA(0,1,1) x (1,1,1)51 , Bottom 
ARIMA(1,1,1) x (0,1,1)51. The red line is the forecast, the blue lines are the std. errors, the green line 
marks the start of the forecasting. 

 

2.1.4. Cross Validation and Final Model Selection 
Given the relatively similar power of models, cross validation testing was used to further 

assess which model was better. For the CV test, the models were re-estimated while leaving out a 

total of 44 weeks that encompass the time frame from January 2018 to October 2018. After re-

estimating the models on the reduced data set, they were then used to forecast the weeks that 

were left out (the forecast is shown in Figure 2.7) and their sum of square errors was calculated. 

The results for the sum of square errors were 98259945534 and 105956867623 for 

ARIMA(0,1,1) x (1,1,1)51  and ARIMA(1,1,1) x (0,1,1)51  respectively.  

From the graphs we note that visually there is not a great difference between the 

forecasts, so we rely sum of square errors to select the final model. The SSE indicates the 

selection of the model ARIMA(0,1,1) x (1,1,1)51. 
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Figure 2.8. Forecasting from the beginning of November 2018 to the end of April 2019, using the 
model ARIMA(0,1,1) x (1,1,1)51. 

 
3. Forecast and Conclusion 

For the final forecast, the model ARIMA(0,1,1) x (1,1,1)51 was used to forecast 26 weeks ahead  –
which corresponds to roughly to 6 months, that is, from the beginning of November 2018 to the end of 
April 2019. 

The first thing we note for the forecasts shown – in both section 2.1.4. and Figure 3.1 – is that they 

are reasonable. Moreover, we can appreciate that they both closely resemble the shape of the season 
immediately before; although in the case of this final forecast, we can observe a little bit of an increase 
when comparing the year to year growth. This increase is something we would expect if the upward trend 
shown in the data should continue. All of this indicates that the model is suitable, but in order to assess it 
absolute validity we would have to wait to see how the estimates fare with reality. 
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R CODE (it’s a little messy) 

rm(list = ls())    #delete objects 

cat("\014") 

library(ISLR) 

library(astsa) 

library(forecast) 

library(TSA) 

library(xts) 

  

monthlyrides <- read.csv("/Users/root1/Documents/Python_Files/Outputs/monthlyrides.csv", header=TRUE) 

weeklyrides <- read.csv("/Users/root1/Documents/Python_Files/Outputs/weeklyrides.csv", header=TRUE) 

  

# x <- subset(weeklyrides, select=c("week_end", "rides")) 

data1 <- weeklyrides[3] 

  

# prepare the data 

data1 <- ts(data1[,1]) 

  

  

#===============================================# 

######### Exploratory Data Analysis ############# 

#===============================================# 

  

##=====================## 

## First Plot the Data ## 

##=====================## 

  

plot.ts(data1, main = "Weekly Rides") 

  

par ( mfrow =c(2 ,1), mar=c(3 ,3 ,1.5 ,1.5) , mgp=c (1.6 ,.6 ,0) ) 

acf(data1,length(data1), main = "") 

pacf(data1,length(data1), main = "") 

  

#===============================================# 

## Variance Stabilization by log transformation## 

#===============================================# 

  

BoxCox.lambda(data1) #= 0.4869091 Close to 0, therefore use Square Root Transformaation 

  

  

sqrt.data1 = sqrt(data1)  
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plot(sqrt.data1, main = "Square Rooted Weekly Rides") 

  

##==================================## 

## Estimate and Eliminate the Trend ## 

##==================================## 

  

  

#####          Diferenced Sqrt Data 1        ############ 

diff.sqrt.data1 = diff(sqrt.data1) 

  

#####  Seasonal Difference diff(Sqrt Data 1) ############ 

  

lag.diff.sqrt.data1 = diff(diff.sqrt.data1,51) 

  

  

#####  Plot Differences ############ 

  

par ( mfrow =c(3 ,1), mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

plot(sqrt.data1,main="sqrt(Weekly Rides)") 

plot(diff.sqrt.data1,main="Differenced sqrt(Weekly Rides)") 

plot(lag.diff.sqrt.data1,main="lag Differenced sqrt(Weekly Rides)") 

  

  

########       ACFs               ######### 

  

par ( mfrow=c(3 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

acf(sqrt.data1           , lag.max = 275 , main = "ACF of sqrt(Weekly Rides)"             ) 

acf(diff.sqrt.data1      , lag.max = 275 , main = "ACF of differenced sqrt(Weekly Rides)" ) 

acf(lag.diff.sqrt.data1  , lag.max = 275 , main = "ACF of lag differenced sqrt(Weekly Rides)" ) 

  

########       PACFs             ######### 

  

par ( mfrow=c(3 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

pacf(sqrt.data1           , lag.max = 275 , main = "ACF of sqrt(Weekly Rides)"             ) 

pacf(diff.sqrt.data1      , lag.max = 275 , main = "ACF of differenced sqrt(Weekly Rides)" ) 

pacf(lag.diff.sqrt.data1  , lag.max = 275 , main = "ACF of lag differenced sqrt(Weekly Rides)" ) 

  

  

##        Observations   & Candidate Models        ## 
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#The data appears to show signs of seasonality around the week 51 or 52 (Although in a yearly data set we would usually  

# expect 52 weeks). The seasonality is made clear by the spikes in the ACF at lags~~ 51, 103 

# using s = 51 

# using s = 52 

# We can see at seasonal lags: 

# It appears that either, 

#   (i)  ACF either tails off  and the PACF tails off: Candidate model = SARIMA(1,1,1) (p = 1 beaucuase one seasonal spike in 

PACF and q = 1 because 1 spike in ACF)  

#   (ii)  ACF cuts off at slag 1 and PACF tails off: : Candidate model = SARIMA(0,1,1) 

#   (iii) ACF tails off and PACF cuts off at slag 1: : Candidate model = SARIMA(1,1,0) 

  

# Within seasons candidates : 

# It appears that either, 

#   (a)   ACF either tails off  and the PACF tails off: Candidate model = ARIMA(1,1,1) (p = 1 beaucuase one seasonal spike in 

PACF and q = 1 because 1 spike in ACF)  

#   (b)  ACF cuts off at slag 1 and PACF tails off: : Candidate model = ARIMA(0,1,1) 

  

#Full candidate models: 

#  (a) x (i)   =  ARIMA(1,1,1) x (1,1,1) s=51 

#  (a) x (ii)  =  ARIMA(1,1,1) x (0,1,1) s=51 

#  (a) x (iii) =  ARIMA(1,1,1) x (1,1,0) s=51 

  

#  (b) x (i)   =  ARIMA(0,1,1) x (1,1,1) s=51 

#  (b) x (ii)  =  ARIMA(0,1,1) x (0,1,1) s=51 

#  (b) x (iii) =  ARIMA(0,1,1) x (1,1,0) s=51 

  

  

#Diagnostics 

sarima.111.111  =  sarima(sqrt.data1, 1, 1, 1, 1, 1, 1, 51) # Good 

sarima.111.011  =  sarima(sqrt.data1, 1, 1, 1, 0, 1, 1, 51) # Better 

sarima.111.110  =  sarima(sqrt.data1, 1, 1, 1, 1, 1, 0, 51) # Almost as Good as first, but has errors 

  

sarima.011.111  =  sarima(sqrt.data1, 0, 1, 1, 1, 1, 1, 51) # 1 Good with a few issues on the Ljung-Box statistic 

sarima.011.011  =  sarima(sqrt.data1, 0, 1, 1, 0, 1, 1, 51) # 3 

sarima.011.110  =  sarima(sqrt.data1, 0, 1, 1, 1, 1, 0, 51) # 2 Good but not as good 

  

# Finalists 

sarima.111.011 

sarima.011.111 

  

  

Table_AIC_BIC_Comparission = data.frame('Model'= c('ARIMA(1,1,1) x (0,1,1) s=51'  ,  'ARIMA(0,1,1) x (1,1,0) s=51'  ,  

'ARIMA(0,1,1) x (1,1,1) s=51' ),  
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                                        'AIC'  = c(sarima.111.011$AIC   ,  sarima.011.110$AIC   ,  sarima.011.111$AIC )  ,  

                                        'BIC'  = c(sarima.111.011$BIC   ,  sarima.011.110$BIC   ,  sarima.011.111$BIC  ) , 

                                        'AICc' = c(sarima.111.011$AICc  ,  sarima.011.110$AICc  ,  sarima.011.111$AICc ) ) 

  

  

Table_AIC_BIC_Comparission 

## Forecasts ## 

sarima.011.111.forcast  =  sarima.for(sqrt.data1, 26, 0, 1, 1, 1, 1, 1, 51) # 1 All p values success 

sarima.111.011.forcast  =  sarima.for(sqrt.data1, 26, 1, 1, 1, 0, 1, 1, 51) # Good! 

  

  

#             Comparisson of AIC, BIC, and AICc 

Table_AIC_BIC_Comparission = data.frame('Model'= c('ARIMA(1,1,1) x (0,1,1) s=51'  ,  'ARIMA(0,1,1) x (1,1,0) s=51'  ,  

'ARIMA(0,1,1) x (0,1,1) s=51' ),  

                                        'AIC'  = c(sarima.111.011$AIC   ,  sarima.011.110$AIC   ,  sarima.011.011$AIC )  ,  

                                        'BIC'  = c(sarima.111.011$BIC   ,  sarima.011.110$BIC   ,  sarima.011.011$BIC  ) , 

                                        'AICc' = c(sarima.111.011$AICc  ,  sarima.011.110$AICc  ,  sarima.011.011$AICc ) ) 

Table_AIC_BIC_Comparission  

# Cross Validation # forcasting the year 2018 up until october (44 weeks) 

#Measure of comparison sum of squre errors 

  

sarima.011.111.forcast.cv  =  sarima.for(sqrt.data1[1:233], 44, 0, 1, 1, 1, 1, 1, 51) # 1 All p values success 

sarima.111.011.forcast.cv  =  sarima.for(sqrt.data1[1:233], 44, 1, 1, 1, 0, 1, 1, 51) # Good! 

  

#Plot the predictions against the real data ## 

  

U_y_limit = max(data1)+150000 

L_y_limit = min(data1)-10000 

  

x_labels_for_plots = weeklyrides[,2][seq(from = 1, to = 280, by =7)] 

y_labels_for_plots = seq(from = 20000, to = U_y_limit, by = 50000) 

  

par ( mfrow=c(2 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

  

plot.ts(data1, main = 'ARIMA(0,1,1)x(1,1,1)', axes = F ,ylim = c(20000,U_y_limit), xlab = "",ylab="") 

lines(sarima.011.111.forcast.cv$pred^2, col="red", type="o") 

lines((sarima.011.111.forcast.cv$pred + sarima.011.111.forcast.cv$se) ^ 2 , col="blue", lty="dashed") 

lines((sarima.011.111.forcast.cv$pred - sarima.011.111.forcast.cv$se) ^ 2 , col="blue", lty="dashed") 

lines(abline(v = 234, col="green")) 

axis(1, labels= x_labels_for_plots, at=seq(from = 1, by=7, to=length(weeklyrides[,2])) ) 

axis(2, labels= y_labels_for_plots, at=seq(from = 20000, by=50000, to = U_y_limit) ,las=1) 

box() 

      



 13 

plot( data1, main = 'ARIMA(1,1,1)x(0,1,1)',lty ='solid', axes = F ,ylim = c(20000,U_y_limit), xlab = "",ylab="") 

lines(data1) 

lines(sarima.111.011.forcast.cv$pred^2, col="red", type="o") 

lines((sarima.111.011.forcast.cv$pred + sarima.111.011.forcast.cv$se) ^ 2 , col="blue", lty="dashed") 

lines((sarima.111.011.forcast.cv$pred - sarima.111.011.forcast.cv$se) ^ 2 , col="blue", lty="dashed") 

lines(abline(v = 234, col = 'green')) 

axis(1, labels= x_labels_for_plots, at=seq(from = 1, by=7, to=length(weeklyrides[,2])) ) 

axis(2, labels= y_labels_for_plots, at=seq(from = 20000, by=50000, to = U_y_limit) ,las = 1) 

box() 

  

##           Obtain the sum of square errors        ## 

  

SSE_sarima.011.111.cv = sum((sarima.011.111.forcast.cv$pred^2 -  data1[-1:-233])^2) 

SSE_sarima.111.011.cv = sum((sarima.111.011.forcast.cv$pred^2 -  data1[-1:-233])^2) 

  

  

SSE_sarima.011.111.cv  

SSE_sarima.111.011.cv 

  

#More plots for paper 

  

  

forecast_labels <- read.csv("/Users/root1/Documents/Python_Files/Outputs/forecast_labels.csv", header=TRUE) 

  

x_labels_for_plots_forecast_26weeks = forecast_labels[,1][seq(from = 1, to = length(weeklyrides[,2])+26, by = 7)] 

  

  

  

  

plot.ts(data1, main = 'Weekly rides Forecast with ARIMA(0,1,1)x(1,1,1)', axes = F ,ylim = c(20000,U_y_limit), xlim = 

c(1,length(weeklyrides[,2])+26), xlab = "",ylab="") 

lines(sarima.011.111.forcast$pred^2, col="red", type="o") 

lines((sarima.011.111.forcast$pred + sarima.011.111.forcast$se) ^ 2 , col="blue", lty="dashed") 

lines((sarima.011.111.forcast$pred - sarima.011.111.forcast$se) ^ 2 , col="blue", lty="dashed") 

lines(abline(v = 277, col="green")) 

axis(1, labels= x_labels_for_plots_forecast_26weeks, at=seq(from = 1, by=7, to=length(weeklyrides[,2])+26) ) 

axis(2, labels= y_labels_for_plots, at=seq(from = 20000, by=50000, to = U_y_limit),las=1 ) 

box() 

  

  

  

plot( data1, main = 'ARIMA(1,1,1)x(0,1,1)',lty ='solid', axes = F , ylim = c(20000,U_y_limit), xlim = 

c(1,length(weeklyrides[,2])+26)) 
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lines(data1) 

lines(sarima.111.011.forcast$pred^2, col="red", type="o") 

lines((sarima.111.011.forcast$pred + sarima.011.110.forcast$se) ^ 2 , col="blue", lty="dashed") 

lines((sarima.111.011.forcast$pred - sarima.011.110.forcast$se) ^ 2 , col="blue", lty="dashed") 

lines(abline(v = 277), col="green") 

axis(1, labels= x_labels_for_plots_forecast_26weeks, at=seq(from = 1, by=7, to=length(weeklyrides[,2])) ) 

axis(2, labels= y_labels_for_plots, at=seq(from = 20000, by=50000, to = U_y_limit) ) 

box() 

  

  

plot.ts( data1, main = 'Weekly Rides',lty ='solid', axes = F , ylim = c(20000,450000), xlab = "", ylab = "") 

axis(1, labels= x_labels_for_plots, at=seq(from = 1, by=7, to=length(weeklyrides[,2])),las = 3 ) 

axis(2, labels= y_labels_for_plots, at=seq(from = 20000, by=50000, to = U_y_limit) ,las=2) 

box() 

  

  

  

########       ACFs                ######### 

  

par ( mfrow=c(2 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

acf(diff.sqrt.data1      , lag.max = 275 , main = "" ) 

pacf(diff.sqrt.data1      , lag.max = 275 , main = "" ) 

  

########       PACFs             ######### 

  

par ( mfrow=c(2 ,1) , mar=c(3 ,3 ,1 ,1) , mgp=c (1.6 ,.6 ,0) ) 

acf(lag.diff.sqrt.data1  , lag.max = 275 , main = "" ) 

pacf(lag.diff.sqrt.data1  , lag.max = 275 , main = "" ) 

 


